

Mark Scheme (Results)

Summer 2021

Pearson Edexcel International Advanced Level In Statistics S1 Paper WST01/01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2021 Question Paper Log number P63150A Publications Code WST01_01_2106_MS All the material in this publication is copyright © Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- Where a candidate has made multiple responses <u>and indicates which response they</u> <u>wish to submit</u>, examiners should mark this response.
 If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer that is the <u>most complete</u>.
- 7. Ignore wrong working or incorrect statements following a correct answer

Quest Numb	tion ber	Scheme	Marks	
1. ((a)	Fitst Counter Second Counter Red T R	B1 B1	
	(b)	$P(Y) = \frac{7}{12} \times \frac{2}{11} + \frac{3}{12} \times \frac{2}{11} + \frac{2}{12} = \left\{ \frac{42}{132} \text{ or } \frac{7}{22} \right\} \underline{\text{or}}$ $P(\text{Yellow and two counters}) = \frac{7}{12} \times \frac{2}{11} + \frac{3}{12} \times \frac{2}{11} = \left\{ \frac{20}{132} \text{ or } \frac{5}{33} \right\}$	(2) M1	
		$\frac{P([Y \cap R] \cup [Y \cap B])}{P(Y)} = \frac{\frac{20}{132}}{\frac{42}{132}}$	M1	
		$= \frac{1}{42} \frac{\text{or}}{21} \text{oe}$	A1 (3) [5 marks]	
		Notes		
	(a)	1^{st}B1 for the remaining probs on first set of branches and at least one on 2^{nd} set 2^{nd}B1 for a fully correct tree diagram with all the correct probabilities		
	(b)	1 st M1 for a correct ft expression for P(<i>Y</i>) or P(Yellow and two counters)ft their tree diagram eg $1 - \frac{7}{12} \times \frac{6+3}{11} - \frac{3}{12} \times \frac{7+2}{11}$ NB: The method is implied by the numbers in curly brackets but we do not need to see them to award the mark.		
		2 nd M1 for a correct ratio formula (symbols or words) <u>and</u> at least one correct ft prob or fully correct ft ratio. Do not follow through probabilities > 1 or < 0		
		A1 for $\frac{10}{21}$ or exact equivalent. (Allow $0.\dot{4}7619\dot{0}$)		
		NB If an exact correct fraction is not given and an awrt 0.476 is given it would get M1M1A0 if from correct working Generally if the answer is correct then award full marks (unless from obvious		
		incorrect working) or notes indicate otherwise		

Question Number		Scheme	Mar	·ks
2. (a)	B and C		B1	
(h)	A and C in	dependent gives		(1)
	(b) A and C independent gives: $P(C) \times 0.65 = 0.13 \text{ or } 0.65 \times (r+0.13) = 0.13 \text{ or } 0.65 \times (0.48 - s)$		M1	
	P(<i>C</i>)	= 0.2 or $r + 0.13 = 0.2$ or $0.48 - s = 0.2$	A1	
	P(A) + r +	$s = 1$ or 0.65 ± 0.07 or $s = 0.48 - 0.2 = 0.28$	A1 M1	
	1 (1) + 7 +	s = 1 - 0.72 = 3 0.00 + 0.07 + 0.07 + 0.000	A1	
				(5)
(c)	$P[(B\cup C)$	[] = "0.2" + q or 0.13 + "0.07" + q	B1ft	
		$P(A \cap C') = p + q \ \{= 0.52\}$	B1	
	$\Big \Big\{P\Big \Big(A \cap C\Big)\Big $	$C' \cap (B \cup C) \rfloor = q \Longrightarrow $ $"(p+q)" \times "(0.2+q)" = q$ or	M1	
	(p+q)"×	$((0.13 + 0.07 + q)) = q \text{ or } (p+q) \times ((1-s-p)) = 0.52 - p$		
	[Using p +	$-q = 0.52$] $0.52 \times "(0.2+q)" = q \text{ or } 0.52(0.72-p) = 0.52-p$	M1	
		$q = \frac{13}{60}$	A1	
		$p = \frac{91}{300}$	A1	
		Notes	[12 ma	(0) rks]
(a)	B1	B and C seen. If they include A then B0	-	-
(b)	1 st M1	for a correct equation for $P(C)$ using independence.		
	1 st A1	for $P(C) = 0.2$ correct linear equation for <i>r</i> or <i>s</i>		
	2 nd A1	for either $r = 0.07$ or $s = 0.28$		
	2^{nd} M1	for using $\sum_{r=1}^{\infty} p = 1$ Allow letter r and s or their values for r and s provid	ed they	are
	3 rd Δ 1	probabilities. for both $s = 0.28$ and $r = 0.07$		
	5 111	NB: The quotations around the 0.07 (" 0.07 ") imply that we ft their value	ie	
(c)	1 st B1ft	for an expression (in q) for $P(B \cup C)$ ft their value of r or their "0.2"		
	and D 1	eg 0.13 + "their r " + q Implied by 1 st or 2 nd M1 below.		
	2 DI	In terms of p and q or 0.52 Implied by 1^{st} or 2^{nd} M1below		
	1 st M1 for a correct use of independence (ft their probabilities), values or letters.			
	2^{nd} M1 using $p + q = 0.52$ to gain a linear equation in one variable			
	1 st A1	for a correct fraction for q		_
	2 nd A1	for a correct fraction for p SC: If both p and g are given as equivalent	0.07	
		SC. If both p and q are given as equivalent recurring decimals award AOA1 ag 0.216 and 0.202		
		recurring decimals award AOAT eg 0.210 and 0.505	0.28	

Question Number	Scheme	Marks	
3 (a)	Width = 2.5 (cm)	B1	
	1.5 cm ² for freq of 5 so $6 \times 1.5 = 9$ cm ² for freq of 30 or fd $= \frac{5}{3}$ w $\times h = 9$	M1	
	So $h = 9 \div 2.5$ or $6 \div \frac{5}{3} = 3.6$ (cm)	A1	
		(3)	
(b)	$Q_2 = [12] + \frac{16}{25} \times 3$ allow use of $(n + 1)$ giving $[12] + \frac{16.5}{25} \times 3$	M1	
	= 13.92 = awrt <u>13.9</u>	A1 (2)	
(c)(i)	$\sum fx = 5 \times 6.5 + 13 \times 9 + 16 \times 11 + 25 \times 13.5 + 30 \times 17.5 + 11 \times 24 = 1452$	M1	
	$\overline{x} = 14.52 = \text{ awrt } \underline{14.5}$	A1	
(**)		(2)	
(11)	$\sum fx^2 = 6.5^2 \times 5 + 9^2 \times 13 + 11^2 \times 16 + 13.5^2 \times 25 + 17.5^2 \times 30 + 24^2 \times 11 = 23280$	MI	
	$\sigma_x = \sqrt{\frac{"23280"}{100} - ("14.52")^2}$ or $\sqrt{21.9696}$	M1	
	$\pi = 4.687 = \text{avert } 4.69$	Δ1	
	$O_{\rm r} = 4.007 = a {\rm aut} \frac{4.07}{100}$	(3)	
(d)	$\frac{1}{2} \times 13 + 16 + 25 + 30 + \frac{1}{4} \times 11$	M1	
	So proportion is 80.25 % or 0.8025 awrt 0.803	A1	
		(2)	
(e)	$Profit = 2.2 \times "0.8025" + 0.8 \times \frac{0.75 \times 11}{100} - 1.2 \times "\left(1 - \left 0.8025 + \frac{0.75 \times 11}{100} \right \right) "$	M1	
(0)			
	= 1.6935 awrt <u>1.7 (p)</u>	A1 (2)	
	Notes	[14 marks]	
(a)	B1 for width = 2.5 (cm) for sight of 0 cm ² or we $h = 0$ or fd $= \frac{5}{2}$ (c. c.)		
	M1 for height $= 3.6 \text{ (cm)}$		
(b)	$M1 \qquad 16 \qquad 9 \qquad m-12 \qquad 16$		
	for $\frac{10}{25} \times 3$ or $\frac{10}{25} \times 3$ or $\frac{10}{15 - m} = \frac{10}{9}$		
	For any correct equation leading to Q_2 or correct fraction as part of Q_2		
() (•)	A1 for awrt 13.9 (use of $(n + 1)$ giving $13.98 = awrt 14.0$)		
(C)(1)	M1 for attempt at Σfx with at least 3 correct terms or $900 < \Sigma fx < 1800$		
	A1 for awrt 14.5 (correct answer only $2/2$)		
(ii)	1^{st} M1 for attempt at Σfx^2 with at least 3 correct terms or $20\ 000 < \Sigma fx^2 < 26\ 000$	000	
	for info $\Sigma f x^2$ = 211.25 + 1053 + 1936 + 4556.25 + 9187.5 + 6336		
	2^{nd} M1 for a correct expression including $\sqrt{(ft their \Sigma fx^2)}$ if clear it is Σfx^2) Do not allow		
	$(\Sigma tx)^2$ for Σtx^2 A 1 for event 4.60 (allows $z = 4.7107$ event 4.71) (connect ensurer only 2)	2)	
(b)	A1 I for awrt 4.09 (allow $s = 4.7107$ awrt 4.71) (correct answer only 57 M1	(13)	
(4)	for attempt at a correct expression (allow 1 error or omission) eg100 –	$\left(5 + \frac{15}{2}\right) - \frac{35}{4}$	
	A1 for awrt 80.3% or 0.803		
(e)	M1 for a correct expression ft their 0.8025 o.e. eg		
	$\lfloor 2.2 \times (100 - 11.5 - 8.25) + 0.8 \times 8.25 - 1.2 \times 11.5 \rfloor \div 100$		
	Condone $[2.2 \times "80" + 0.8 \times (8) - 1.2 \times (12)] \div 100$		
	A1 for awrt 1.7 Allow f 0.017 (this must have units)		

Question Number	Scheme	Marks	
4. (a)	$P(W < 120) = P\left(Z < \frac{120 - 165}{35}\right)$	M1	
	$= P(Z < -1.2857) = 1 - 0.9015 \text{ or } 1 - 0.9007285$ $= 0.09927 = awrt 0.0985 \sim 0.0994$	M1 A1 (3)	
(b)	e.g. $P(W > x) = \frac{1}{3}$ gives $\frac{x - 165}{35} = \pm 0.43$ (calculator 0.430727) Limits 149.9245 to 180.0754 awrt 150 to 180	M1B1	
(c)	$P(W < 200 W > "180") \underline{\text{or}} \frac{P("180" < W < 200)}{P(W > "180") \text{or} \frac{1}{3}}$	(4) M1	
	$=\frac{0.8413(44739)-\frac{2}{3}}{\frac{1}{3}}$ $= 0.52403 (0.523~0.5264)$	A1 (num) A1	
(d)	$\frac{1}{3} \times \frac{1}{3} \times \frac{1}{3}; \times 3!$	(3) M1;M1	
	$=\frac{2}{9}$	A1 (3)	
	Nteder	[13 marks]	
(a)	Notes 1 st M1 for standardising with 120 (allow 210), 165 and 35 Accept +		
	2 nd M1 for attempting $1 - p$ [where $0.85]A1 for awrt 0.0985~0.0994 (Correct ans only 3/3)$		
(b)	M1 for standardising with x (o.e.) 165 and 35 and setting equal to a z value, $0.4 < z < 0.5$ (Accept $\frac{165 - x}{35} = \pm z$ where $0.4 < z < 0.5$)		
	B1 for use of $z = 0.43$ or better We must see 0.43 or better. 1 st A1 for lower limit of awrt 150 2 nd A1 for upper limit of awrt 180		
SC	A0A1 for two limits symmetrically placed about 165 provided M1 scored NB : correct answers with no working can score M1B0A1A1		
(c)	M1 for a correct probability statement (either form) ft their 180 or a correct ratio $1^{st} A1$ for a correct numerator (awrt 0.175) $2^{nd} A1$ for an answer in the range switt 0.5264 (use of 180 sizes 0.5262860)		
	2^{-111} for an answer in the range awrt $0.525^{-0.5204}$ (use of 100 gives 0.5203		
(d)	1 st M1 for $\left(\frac{1}{3}\right)^3$ (or equivalent)		
	2^{nd} M1 for $p \times 3!$ (or equivalent) where 0		
	A1 for $\frac{2}{9}$ or any exact equivalent		

Question Number	Scheme	Marks	
5. (a)	{E(X) = } $-2a - b + 0 \times c + b + 4a$ or $2a$ { $2a = 0.5$ so } $a = 0.25$	M1 A1	
(b)	$\{E(X^{2}) = \{(-2)^{2} \times a + (-1)^{2} \times b + 0 + 1^{2} \times b + 4^{2} \times a \text{ or } 20a + 2b \text{ (o e)} \}$	(2) M1	
	$\{\operatorname{Var}(X) = \}$ "20 <i>a</i> + 2 <i>b</i> " - 0.5 ²	M1	
	20a + 2b - 0.25 = 5.01 (o.e.) e.g. "4.75" + $2b = 5.01$	A1	
	$\{ 2b = 0.26 \text{ so } \} \underline{b} = 0.13$	A1	
	{Use of sum of probs = 1 to calculate a 2^{nd} value} $\underline{c = 0.24}$	A1ft	
		(5)	
(c)(i)	$\{E(Y) = 5 - 8 \times 0.5 \} = \underline{1}$	B1	
(ii)	$\{\operatorname{Var}(Y) =\} (-8)^2 \times 5.01$	M1	
	= 320.64 awrt <u>321</u>	A1	
		(3)	
(a)	$4X^2 > 5 - 8X$	MI	
	$(2X-1)(2X+5) > 0 \implies X > 0.5$	MIAI	
	So need $X = 1$ or $4 \text{ or probability of } a + b - 0.38$		
	- 0.50	(5)	
		[15 marks]	
	Notes		
(a)	M1for any correct expression for $E(X)$ in terms of a (or a, b, c)A1for $a = 0.25$		
(b)	1 st M1 for attempt at an expression for $E(X^2)$ with at least 3 correct non-zero terms 2 nd M1 for a correct expression for $Var(X)$ eg"18 $a - c + 1$ " – 0.5 ² Allow with their value of <i>a</i> substituted		
	1 st A1 for a correct equation for b (or possibly c) eg" $18a - c + 1$ " - 0.5 ² = 5.01 Allow with their value of a substituted		
	$2^{nd} A1$ for either $b = 0.13$ or $c = 0.24$		
	3 rd A1ft for using $c = 1 - 2 \times "0.25" - 2 \times "0.13"$ or $b = (1 - 2 \times "0.25" - "0.24)$ the correct ft answer for their 2 nd value	4")÷2 to gain	
(c)	B1 for $\{E(Y) =\} 1$ M1 for correct use of $Var(aX + b) = a^2 Var(X)$ A1 for awrt 321		
(d)	1^{st} M1for correct quadratic inequality (may be inside prob statement) or table of values 2^{nd} M1for an attempt to solve or identifying correct X values 1^{st} A1for $X > 0.5$ [may also have $X < -2.5$] 3^{rd} M1for realising need $X = 1$ and 4 only or answer of their $(a + b)$ 2^{nd} A1for 0.38 (or exact equivalent) only (correct ans only 5/5)		

Question Number			Scheme	Marks
6.	(a)	$\left\{\mathbf{S}_{yy}=\right\}4$	$2.63 - \frac{23.7^2}{16} = [7.524375]$	B1
			10	(1)
	(b)	Use of \bar{y}	$\overline{y} = 3.684 - 0.3242\overline{x}$; so $\sum x = 16 \times \left(\frac{3.684 - \frac{23.7}{16}}{0.3242}\right) = 108.71067$	M1; A1
		$\left\{\mathbf{S}_{xx}=\right\}7$	$56.81 - \frac{("108.71")^2}{16} ; = 18.18435 \text{ awrt } \underline{18.2}$	M1; A1
	(c)	$b = \frac{\mathbf{S}_{xy}}{\mathbf{S}_{xx}} =$	$\Rightarrow S_{xy} = "18.1843" \times (-0.3242) [= -5.8953]; r = \frac{"-5.89536"}{\sqrt{"18.184" \times 7.524375}}$	(4) M1; M1
			= - 0.50399 = <u>- 0.49 ~ -0.51</u>	A1 (3)
	(d)	Sub $x = 2$	2 in the regression line gives $y = 3.0356$	B1 (5)
			S 110 104 "	(1)
	(e)	St.dev =	$\sqrt{\frac{S_{xx}}{n}} = \sqrt{\frac{10.104}{16}} = 1.066$	M1
		So limits	are: $\frac{"108.71"}{} + 3 \times "1.066" = 3.5965~ 9.9929 = awrt 3.6~10$	M1 A1
			16 <u>16</u>	(3)
	(f)	The prob	ability of $x = 2$ being in the range is very small;	B1ft;
	(1)	so Behro	uz's estimate is <u>unreliable</u>	dB1ft (2)
	(g)	Should u	se regression of x on y to estimate unemployment or equivalent	B1
			So Andi's suggestion is not suitable or not to be recommended	dB1 (2)
			NT 4	[16 marks]
	(a)	B1	Notes Value given so must see sight of a correct expression – allow 561 69 fo	or 23 7^2
	(u) (b)	1 st M1	for clear use of regression line with \overline{y} or $\sum y$	1 23.1
		1 st A1	for $\sum x = a wrt 109$	
		2^{nd} M1	for a correct expression for S_{xx} ft their Σx	
		2 nd A1	for awrt 18.2	
	(c)	1 st M1	for use of gradient to find S_{xy}	
		2^{III} M1	for a correct expression for r ft their S_{xy} and S_{xx}	
	(d)	AI B1	for an answer in the range $-0.49 \sim -0.51$ for sight of $y = 3.03$ or better Allow 3.04	
	(u)	DI	$756.01 (1100.71 \text{ m})^2$	
	(e)	1 st M1	for a correct attempt at st. dev. ft their S_{xx} or $\sqrt{\frac{756.81}{16}} - \left(\frac{108.71}{16}\right)$	ft their Σx
		2^{nd} M1	for one correct calcft their values	
	(f)	AI	for a correct reason ft their range in part (a) as $x = 2$ is outside the range	e Allow
	(II)	1 st B1ft	extrapolation extrapolation	C. AIIUW
		2 nd dB1ft	dep on 1 st B1 for stating a correct conclusion for their range	
	(g)	1 st B1	for a suitable reason based on reg line, eg regression line $(y \text{ on } x)$ can d	only be used
		2 nd dB1	to estimate wages. Allow x instead of unemployment and y instead of v dep on 1^{st} B1 for suggesting not suitable (or equivalent)	vages